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Relativistic High-Energy Approximation for Elastic Scattering of Dirac Particles5* 
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A high-energy approximation is described for predicting the elastic scattering of Dirac particles by a 
scalar potential. The formal solution is then applied to the specific problem of electron and positron scattering 
from nuclei. The predicted cross sections turn out to be in close agreement with those of partial-wave 
analysis, even for heavy nuclei and at large scattering angles, where the Born approximation is entirely 
inadequate. 

I. INTRODUCTION AND SUMMARY 

THE unsuitability of the first Born approximation 
for electron scattering from the heavier nuclei 

has been known for some time. The alternative method 
of phase-shift analysis has been successfully applied1-4 

to electron and positron scattering in the region of 
several hundred MeV, but as the energy increases the 
numerical difficulties tend to proliferate rapidly. 
Furthermore, the division of the problem into solution 
of separate partial waves may tend at times to obscure 
one's contact with the underlying physics. 

Several attempts have been made to provide a 
suitable approximation technique for the heavy ele
ments, but so far these have appeared too limited in 
their range of usefulness to attain general acceptance or 
application. A high-energy approximation for the 
Schrodinger equation was shown by Glauber5 to have 
a range of validity which encompasses that of both 
Born approximation and the WKB method, as well as 
the region in between. Schiff,6 using the method of sta
tionary phase, also made such an approximation, not 
only for the Schrodinger equation, but for the Dirac 
equation as well. He developed two approximations, one 
valid for small scattering angles, and the other for large 
angles. Because his derivation of the small-angle ap
proximation suggested that it was valid over only an 
extremely small angular range, it was rather his large-
angle formula which was applied in asymptotic"form by 
Tiemann7 with somewhat limited success to the same 
nuclear model as in Figs. 2, 3, and 4 below. Since an 
intermediate range of angles had apparently not been 
included, subsequent developments by Saxon8'9 and 
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Schiff9 extended the treatment to include all angles, with 
the small angle formula as a simplifying limit. 

In this paper an independent theoretical development 
by another method has resulted in the same expression 
which Schiff obtained for small angles, but suggests 
that it is accurate over a much greater range of angles 
than his derivation implied. It is then shown how this 
simple result may be applied to specific models, giving 
close agreement with partial-wave calculations over the 
entire angular range. 

The method taken here follows the approach of 
Glauber,5 who solved the Schrodinger equation for scat
tering in the high-energy limit by introducing into the 
expression for the scattering amplitude a wave function 
which consists of a plane wave modulated by a slowly 
varying function of position. Now, however, it is the 
Dirac equation which is to be solved, the plane wave 
becomes a spinor, and the slowly varying function be
comes a 4X4 matrix operator in the space of the Dirac 
matrices. 

The formal result turns out finally to be fairly simple, 
resembling that for the Schrodinger equation, and dif
fering in fact only by the added presence of a spinor 
term. The expression for the scattering amplitude is an 
integral over a variable related to the classical impact 
parameter, replacing the summing of discrete partial 
waves. 

This result has been applied to the problem of the 
scattering of electrons and positrons from an arbi
trary (spherically symmetric) nuclear model. The final 
integral expression for the scattering amplitude consists 
of 'two parts, one a single integration within the nuclear 
charge cloud, and the other corresponding to those 
particles whose classical orbits pass through the purely 
Coulomb region outside the nucleus. The latter integra
tion has been carried out explicitly in terms of known 
functions, while the former must in general be evaluated 
numerically for an arbitrary charge distribution. 

In addition to calculations carried out for comparison 
with phase-shift techniques, a cross section has also 
been computed for the scattering of 1000 MeV electrons 
from a uniform model gold nucleus. At this energy, 
where for numerical reasons phase-shift analysis 
becomes extremely unwieldy, if at all usable, the high-
energy approximation continues to give stable results, 
and in fact increases in validity. The relatively simple 
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functional form of the scattering matr ix element m a y 
also be expected to improve one's insight into the scat
tering processes and target s tructure. 

II. SOLUTION OF THE DIRAC EQUATION IN THE 
HIGH-ENERGY APPROXIMATION 

We begin by considering the Dirac equation for a 
particle in the presence of a scalar potential F ( r ) , 

(a .p+0m-£Wr) = -7(r)*(r) , (1) 

in the natura l system of units where h = c= 1. E and m 
are energy and mass of the incident particle, respec
tively, and a and /3 are of course the Dirac matrices. 
T h e Green's function for this equation is likewise a 
4 X 4 matr ix in the space of Dirac operators, and may 
be used to obtain the scattering solution, 

iKr) = ^o(koV k o 

4irJ 
p+(3tn+E) 

eik\r—r'\ 

x- -FCrOlKO*'. (2) 
r—r 

The incident plane-wave spinor ^o(ko) is a function of 
the incident momentum ko, ^ is a spinor, and p = — ivr 

operates with respect to r. 
Asymptotically, far from the scattering center, 

1 eiJci 

\l/(r)~Uo(ko)eik°-r (a-kf+pni+E)— 
47r r 

xL-^'Vix'^x'W, (3) 

where k/ is the final-state momentum. The scattering 
amplitude is therefore a spinor and is given by 

1 
/(*) = («-k/+/3f»+E) 

47T 

/ e~ikf.r V(r)f(r)di. (4) 

The matr ix element for scattering in the direction 6 
with a particular spin s tate is, however, a scalar ob
tained by forming the inner product of f(6) with the 
Hermit ian adjoint of the final-state spinor. Thus the 
matrix element for this transition is 

M=uf*(kf)f(6) (5) 

Following now the approach taken by Glauber5 in 
the high-energy approximation for the Schrodinger 
equation, we assume a solution for the wave function 
in Eq . (2) in the form of a plane-wave spinor modulated 
by a slowly varying function of position. T h u s 

t(r)=<p(r)uo(ko)eik°-*, (6) 

where <p(r) is the modulating function, in this case a 
4 X 4 matrix operator. 

Substituting Eq . (6) in Eq . (2) enables us to obtain 
an expression for <p(r). 

1 n p%KT 

<p(r) = 1 / erikQ'T"(a*p+pm+E) 

XF(r - r" )^ ( r - r ">f r" , (7) 

where r// = r—r', and the first term on the right is the 
unit matrix. 

We now introduce the restriction that V<p vary by a 
small fractional amount over a reduced particle wave
length 1/k. This is an important restriction on both the 
potential and the modulating function. The effect of a 
violation of this condition will be seen subsequently. 
We can further express this limitation by noting that 
if d is a distance over which V<p varies significantly, 
then 1/M«1. The high-energy approximation is a 
process of dropping higher order terms in 1/kd. 

We consider first the integration of that portion of 
Eq. (7) which does not involve the gradient operator p. 
Integrating by parts in spherical coordinates over 
n=cosfl, it may be seen that the expression is of the form 

/

CO * + l 

/ r"F(p)eihr"^-^dndr" 

/•CO i— 

Jo L -ik 
dr"+-

-JM=_I ik 

/•CO l»-j-l 

Jo J.-i 
(8) 

where F(fx)^V(p has been so writ ten because here we 
are interested only in its JJL dependence. This portion of 
the solution corresponds to t h a t of the Schrodinger 
equation, and i t has been observed5 t ha t the final term 
of Eq . (8), as well as the lower limit /x= — 1, contribute 
expressions 0(l/kd) which may be dropped, leaving 
only the /JL= + 1 term. This may be readily adduced by 
considering piecewise integration over r" in intervals 
of length d. 

There remains the a»p term in Eq . (7). This m a y be 
writ ten 

/

+1 /»oo 

dua-A" dr"(ik-\Ir"yt 
Xeikr"(1-^V(i-r")<P(t-t"), (9) 

where ti" = t"/r". Now the 1 / / ' term in Eq. (9) is 
0(l/kd) compared to the ik term, and may likewise be 
neglected by the same reasoning, although here this is 
apparent before the integration by parts. 

Thus in the high-energy limit, assuming cylindrical 
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symmetry about the z axis, Eq. (7) becomes 

i r 

2k J o 

XF(r-r")<Kr-r") dr\ (10) 
M-+1 

where the retention of only the n— + 1 term in Eq. (8) 
requires that the integration be carried out subject to 
the condition that r" remain parallel to % the unit vector 
in the % direction. In Cartesian coordinates, 

<p(x,y,z) = 1 (a • kz+/3m+E) 
2k 

x f V(x,y,J)<p(x,y/W. (11) 

This integral equation may be solved, giving 

r i 

<p(x,yyz) = ex-p\ (a-kz+Ptn+E) 
L 2k 

xf V(x,y,2f)dsA. (12) 

Since we have taken the % axis in the direction of the 
incoming momentum vector, the wave function of 
Eq. (6) becomes 

^(r) = expu k0T (a*k0+j(3w+E) 
I L 2k 

xf V(x,y,z?)dzrl\uQ(ko) . (13) 

But the initial-state spinor is an eigenfunction of 
(oL'ko+Pm+E) with eigenvalue 2E, so that 

^(r) = exp{i|ko-r / F ^ y / ) ^ ' 1 Uo(k0) . (14) 

The matrix element Eq. (5) therefore becomes, upon 
substituting Eq. (14) into Eqs. (4) and (5), 

1 
M = uf*(kf)(a-kf+l3?n+E)uo(ko) 

4TT 

X /exp\i\ q-r / V(x,y,JW 

XV(r)dr, (15) 

where q is the momentum transfer k0—k/. 
The final-state spinor is likewise an eigenfunction of 

the Dirac operator in Eq. (15), operating to the left 

Therefore, transforming to cylindrical coordinates, 

E r 
M= uf*uo / exppq- (b+£s)]F(b,2;) 

2x J 

XexJ-i—f V(b,z,)dz'\dzd^b, (16) 

where di2)b designates integration over the plane of 
impact vectors, and b represents the classical impact 
parameter. 

Equation (16) has a significant defect. It is not sym
metric under velocity reversal. This is due to the nature 
of the trial function Eq. (6), which singled out the in
coming momentum vector for preferential treatment. 
Thus our solution in its present form requires a further 
adjustment if it is to have the important property of 
time reversal invariance. A simple step for restoring 
this symmetry is to effect a coordinate rotation of 
Eq. (16) through angle 0/2, where 6 is the scattering 
angle, so that the incoming and outgoing momentum 
vectors both made an angle 6/2 to the z direction. The 
spinor product of course remains invariant, but the 
integral is changed in value. In the new coordinate 
system, 

exp(iq-&) = l , (17) 

since the momentum transfer vector is now perpendicu
lar to the z axis. This same coordinate rotation was 
introduced in Glauber's solution5 of the Schrodinger 
equation. It is interesting that as an alternative to the 
somewhat arbitrary change of direction, the same result 
is obtained from Eq. (16) if we make a small-angle 
approximation. Thus, if we restrict the solution to small 
scattering angles, Eq. (17) becomes approximately 
correct for the original coordinate system. The restric
tion on angles, however, is quite severe, and may be 
shown to be 

6K<l/kR, (18) 

where R is of the order of the target radius. It will be 
seen subsequently that the final solution suffers no such 
limitation. 

As a result of our choice of a symmetric coordinate 
system, it now becomes possible to integrate Eq. (16) 
with respect to z, resulting in 

M--
2iri 

X 

Since now 
H-*f/_ V(b,z'W - 1 WW J. (19) 

q-b=qbcos<p, (20) 

where <p is the azimuthal angle in cylindrical co
ordinates, in the case of problems with spherical sym
metry we may formally integrate Eq. (19) over angles 
by employing the integral representation of the Bessel 
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function. Thus, finally, the matrix element for tran
sitions from initial to final plane-wave spinor states is 
given by 

k r00 

M = -uf*uA /0(s*)[><x<w-l]W&, (21) 
i Jo 

where 

X(6)= [ V{b,z)dz, (22) 
™ J — oo 

differing from Glauber's result only in the presence of 
the spinor product U/*UQ. This term now incorporates 
into the high-energy approximation the effect of both 
spin and relativity, although no additional approximat
ing conditions have had to be introduced. 

Equation (21) is identical to the result obtained by 
Schiff6 as a small-angle approximation, using a some
what different though not unrelated approach. Despite 
the ad hoc character of the introduction of time-reversal 
symmetry in going from Eqs. (16) to (19), it seems 
preferable to making a small-angle assumption in this 
final stage of the derivation. One would understandably 
be led to assume that a restriction of the nature of 
Eq. (18) invalidates the usefulness of this result, par
ticularly as a high-energy approximation. However, the 
application of Eq. (21) in Sec. V below to various 
nuclear targets and energies shows no evidence of 
degradation in accuracy even at large scattering angles. 
This would appear to justify the viewpoint that the 
arbitrary introduction of a symmetric coordinate 
system represents a restoration of accuracy rather than 
an added approximation. This is further adduced by the 
relationship the result bears to the Born approximation. 
If the second exponential factor in Eq. (19) is expanded, 
the leading term is 

E r 
j|f CD = Uf*Uo / eiQb «>**v(b,z)bdbdzd<p, (23) 

2TT J 

which, for spherically symmetric potentials, is identical 
to the first Born approximation, since #6 cos<p=qT. 
Thus, the high-energy approximation is equivalent to 
an infinite Born expansion, in which the first Born term 
is precisely duplicated, while all the higher order terms 
are approximated. 

The scattering amplitude thus employs a wave func
tion which has been modulated in phase by the presence 
of the force field. However, there is yet another effect 
which has not been included, namely, a type of fre
quency modulation which reduces the de Broglie wave
length of the incident particle as it acquires kinetic 
energy upon approaching the scattering center. This 
effect has been observed10*11 in electron scattering phe
nomena as a shift in the diffraction zeros of Born 
approximation in the direction of increased scattering 

10 R. Hofstadter, Rev. Mod. Phys. 28, 219 (1956). 
11 B. W. Downs, D. G. Ravenhall, and D. R. Yennie, Phys. 

Rev. 106, 1285 (1957). 

angles. Since the particle's wavelength is its meter stick 
for exploring the target, any approximation which fails 
to take account of this contraction will observe things 
to be larger than they actually are. The basic dimen-
sionless parameter of the problem is the product of 
length times momentum transfer [appearing in Eq. (21) 
as the argument of the Bessel function], and an increase 
in length therefore corresponds to increased momentum 
transfer, viz., larger scattering angles. Conversely if we 
wish to duplicate the correct scattering cross section, we 
must increase all length dimensions by a suitable factor. 
This factor should be roughly the particle wavelength 
at infinity divided by some average wavelength in the 
scattering region* A reasonable factor which seems to 
work fairly well for electron scattering is the kinetic 
energy as computed at the rms radius of the target 
charge distribution, divided by the incident energy, 
that is, [1+1 V (rTmB) \ /E~]. The effect is not large enough 
to be very critical, amounting to approximately a five 
percent increase in length dimensions for 400-MeV 
electrons scattered by heavy nuclei. In the limit of very 
high energies the correction becomes insignificant. 

III. THE COULOMB POTENTIAL 

We turn now to the application of the high-energy 
approximation to Coulomb interactions. In order to 
evaluate the xQ>) function of Eq. (22) for scattering of 
electrons by a Coulomb potential, it is necessary for the 
usual physical and mathematical reasons to introduce 
a screen, which is subsequently moved an arbitrarily 
large distance from the scattering center. This has been 
done most conveniently6 with a step function cutoff at 
the screen distance a, resulting, for an attractive po
tential, in 

E /a+(a2-b2)V\ 
x(b) = 2aZ~\n( ) , b<a 

k \ b ) (24) 
0, b>a, 

where a is the fine structure constant and Z is the 
nuclear charge. 

Expanded for large a in powers of b/a, 

x(b) = -2aZ(E/k) ln(b/2a), (25) 

plus successively higher powers of b/a which vanish in 
the limit as the screen distance a goes to infinity. 

When Eq. (25) is substituted in Eq. (21), the result
ing definite integral may be evaluated,12,5 provided a 
damping exponential is first introduced for purpose of 
convergence and then allowed to approach unity. The 
matrix element for Coulomb scattering by an attractive 
potential becomes 

2aZE t r E Hi 
Mc— exp \ i\ 2aZ— \nqa+2t\ \ Uf*Uo, (26) 

q2 [ I k JJ 
12 G. N. Watson, Theory of Bessel Functions (Cambridge Uni

versity Press, New York, 1952), 2nd ed., pp. 385, 190, 350, 351, 
345, 347, 194, 195. 
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where 7j=a,rgT(l—aZiE/k)) and the momentum trans
fer q = 2k sin(6/2). 

If we are not interested in the polarization of the 
electron, then the spinor term, which in the expression 
for the differential cross section appears as |%%o|2, 
may be averaged over initial spin states and summed 
over final states in the usual manner by the method of 
traces.13 For extremely relativistic particles, if the mass 
of the incident particle is neglected compared to its 
energy, this turns out to be1 simply 

| % % o | 2 = c o s 2 ( 0 / 2 ) . (27) 

Without the spinor-produced term cos2 (6/'2), which 
introduces spin and relativity, this results in the 
familiar Rutherford cross section. Furthermore, even 
the logarithmic phase factor which characterizes the 
exact nonrelativistic solution14'15 is present in the scat
tering amplitude (subject to adjustment of the arbi
trary screen parameter a), One is therefore inclined to 
draw considerable comfort from the nonrelativistic 
form of Eq. (26) as a verification of the validity of the 
high-energy approximation. 

But when the spinor term is reinstated, and Eq. (26) 
is regarded as a solution for Dirac particles, this comfort 
turns out to be short-lived. What we have is the first 
Born cross section, which is correct relativistically only 
in the limit aZ<^l, and has been found1,10 to be in
adequate for scattering from a point charge correspond
ing to one of the heavier nuclei. 

This result should, however, come as no surprise, 
since the high-energy approximation is based on the 
premise that the potential varies little over a particle 
wavelength, and this condition has been violated in the 
case of the Coulomb potential by the singularity at the 
origin. Since the first term of the Born series is pre
cisely reproduced in this approximation, it comes 
through in any case, but the higher order terms are not 
adequately represented. 

Thus a valid test of this technique can be made for 
Coulomb interactions only when the target has finite 
extent. This will therefore now be considered. 

IV. SCATTERING BY A CHARGE CLOUD—THE 
SCATTERING OF HIGH-ENERGY ELECTRONS 

AND POSITRONS FROM NUCLEI 

A. The x Function for an Arbitrary Spherically 
Symmetric Charge Distribution 

For simple models, such as the shell and the sphere, 
the integration of Eq. (22) is easily carried out. This is 
not, however, always the case, particularly when the 
potential may not be written as an explicit function of 
position. It is therefore convenient to express x(b) in 

13 S. S. Schweber, Introduction to Relativistic Quantum Field 
Theory (Row-Peterson, Inc., Evanston, Illinois, 1961), pp. 87-90. 

14 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions 
(Oxford University Press, New York, 1949), 2nd ed., p. 48. 

15 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com
pany, Inc., New York, 1955), 2nd ed., p. 116. 

terms of the charge distribution. To do this we utilize 
the Coulomb result Eq. (25) for a charge element, and 
integrate over the nuclear charge cloud. 

Introducing the relative coordinate £ of a field point 
r with respect to a charge point R, and the spherically 
symmetric charge distribution p (R) normalized to unity, 

* = r - R , 

E r f° ' (28) 
x(Pr) = ~ iRp(R) V(bs,zt)dzi, 

where subscripts have been introduced to distinguish 
coordinate systems, and we define a relative variable 
b$ in cylindrical coordinates such that 

h2 = bR
2+br

2-2brbR coscp. (29) 

Employing the Coulomb solution Eq. (25) in Eq. (28), 

E r bk 
X (br) = - 2aZ- \ dR p (R) In— . (30) 

k J 2a 

Upon the substitution of Eq. (29) in Eq. (30), the 
latter may be integrated over polar angle in cylindrical 
nuclear coordinates, with the result 

E\ br rbr 
x(br) = - 4 T T « Z - In— / bRF(bR)dbR 

k [ 2aJ0 

r bR ) 
+ bR\n-F(bR)dbR , (31) 

Jbr 2a J 
where 

/
OO 

p(hR,zB)dzR. (32) 
-00 

It is sometimes convenient to evaluate the "form 
function" F(bR) for a particular model, and then intro
duce it in Eq. (31). Alternately it is illuminating to 
write x(b) as the volume integral 

E[ b rh'=b 

X(b)=-2aZ~\ln— p(r')dT
f 

k [ 2aJ b'=o 

r v i 
+ In-p(r')<Zr' , (33) 

J b'=b 2a J 

where subscripts have been dropped, and the first 
integral of Eq. (33) is evaluated within a cylinder of 
radius b, while the second is evaluated outside this 
cylinder. 

It is interesting to compare Eq. (33) with the corre
sponding expression for the potential, 

V(r) = -az\-[ p(r')dr'+ f -p^dA . (34) 

Thus, the x(b) function in the high-energy approxima-
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tion contains all the necessary information about the 
scattering center, and its determination corresponds to 
that of the potential in other forms of analysis. 

The peculiar mixture of spherical with cylindrical 
symmetry in Eq. (33) may, however, be further simpli
fied. Taking advantage of the normalization of the 
charge density p(r'), Eq. (33) may be written 

x(*)=-
El b 

•laZ— In—+ 
k [ 2a j b 

V 
\ \n-p(r')dr' (35) 

The remaining integral in Eq. (35) may then be inte
grated over angles in spherical coordinates, since 

/ l n - p {r')drr = 4TT / dr'r'2p {r') 
J b'=b b Jb 

x/ 
Jo 

[l-Ctyr')2]1/* r / ( l _ M ' 2 ) l / 2 

dp! In , (36) 

where /x' = cos0', and the cylindrical integration limits 
have been expressed in spherical form. When the inte
gration over p! is carried out, 

E{ b 
x(b)=-2aZ~\\n-

k 

b r« 
-+47T / 
2a Jb 

dr'p{rr)r'2 

X [, 1 + [ 1 - ( 6 A ' ) 2 ] 1 / 2 

b'/r' 
- [ i - ( W ] •]}• (37) 

Thus the cylindrically symmetric function x(b) is 
written as a single spherically symmetric integral over 
the charge density. I t may in fact be expressed as 

X(b)=-2aZ- l n - + < / ( 6 / f ) > 
2a 

(38) 

dropping the primes, where 

f(b/r) = \n-
1+[1-(6A)2] 1/2 

b/r 
-l\-{b/rfjl\ (39) 

and (f(b/r)) is the mean value of this function, weighted 
by the charge distribution and evaluated over all 
r>b. The function f(b/r) is independent of the nuclear 
structure, and reflects only the Coulombic character of 
the interaction between the incoming particle and an 
element of the charge cloud. 

The infinite upper limit of integration in Eq. (37) 
may be replaced by RQ, the cutoff radius of the charge 
distribution, i.e., the point beyond which the charge 
density vanishes or becomes negligible, and a pure 
Coulomb potential exists. Then the integral in Eq. (37) 
is defined only for b<Ro, and vanishes for all b>Ro, 
where Eq. (37) becomes simply Eq. (25). 

I t is convenient further to remove from %W the 
singularity resulting from the infinitely large screen 

parameter a. This may be done without loss of gen
erality by so choosing the arbitrary screen distance a 
that 

2aZ (E/k) In (R0/2a) = 2wn, (40) 

where n is an integer. As the screen is moved to infinity 
the distance a is increased in discrete j u m p s so t h a t 
E q . (40) is always satisfied. Th i s enables us to d rop this 
phase factor when xQ>) is inserted in E q . (21), so t h a t 
finally 

E[ b rRQ 1 
x(b)= -2aZ-\ In—+4TT / drp(r)f*f(b/r) 

k [ R0 Jb 

and 
b<RQ 

E b 
x(b)=-2aZ—\n—: 

k R0 

b>R0. 

(41) 

(42) 

B. Explicit Evaluation of ^(b) for 
Physical Models 

Outside the charge cloud Eq. (42) of course applies. 
I t is therefore only necessary to integrate Eq. (41) for 
the region inside the nucleus. 

Here 

and 

1. Shell 

p(r) = 5(r-Ro)/4irRQ
2 

X(b)= - 2 o Z - { l n [ l + ( l - ( W 2 ) 1 / 2 ] 

- D - C W 2 ] 1 ' 2 } 

2. Uniform Sphere 

x(b) = -2aZ(E/k){Hl+ ( 1 - (V*o)2)1/2] 

- | C 4 - ( J / i ? o ) 2 ] [ l - ( V ^ o ) 2 ] 1 ' 2 } 

(43) 

(44) 

3. Harmonic Oscillator Potential (Shell Model) 

p(r)=(A+Br*)e-v*\ 

This case is most readily solved by means of Eq. (31). 

E( 
x(b)=-2aZ-

X 

IK) 
Ei(-\2b*)/2 V-, -X2&2 (45) 

where 
C=(V*/*)(A+B/2\*), 

and Ei(—\2b2) is the exponential integral. 
When none of the equations (22), (31), or (41) can 

be explicitly integrated, it becomes necessary to 
evaluate Eq. (41) by numerical integration. This 
process corresponds to the integration of Eq. (34) for 
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the potential when the latter cannot be expressed as an 
explicit function of position. 

C. The Scattering Amplitude 

The prediction of scattering cross sections finally 
becomes the problem of evaluating the integral (21) 
for a given charge density distribution. Since the inte
grand is an oscillating function whose amplitude 
diverges asymptotically as the square root of the argu
ment, the integral is defined only with exponential 
damping, as in the case of the Coulomb solution. This 
effectively precludes the possibility of any numerical 
integration schemes for evaluating the infinite integral. 
However, if we break Eq. (21) into two parts, one for 
b<Ro, the nuclear cutoff radius, and the other corre
sponding to the Coulomb region b>Ro, the latter inte
gration may be explicitly carried out to infinity. 

Before performing this integration, it should be noted 
that the second term of Eq. (21) in brackets, consisting 
of unity, vanishes for 0^0 when integrated over the 
entire range zero to infinity, subject of course to the 
introduction of the negative exponential. It is therefore 
tempting to drop this term, dividing the remaining ex
pression into the two ranges of integration. This would, 
however, be an unfortunate decision, as will subse
quently become apparent, since if retained this term 
will cancel precisely another large term in the explicit 
solution of the model-independent integral over b>Ro. 
Failure to observe this explicit cancellation would rele
gate it to numerical evaluation, resulting in error ampli
fication of several orders of magnitude arising from the 
differencing of large numbers. 

The integral in Eq. (21) may be written, omitting the 
spinor product, as 

/ = / i + / 2 , (46) 

where, letting x=b/Ro, 

kRo2 f1 

7i= / J0(qRox)lei^x)-l']xdx, (47) 
i Jo 

kR0
2 r 

12= / Jo (qRox) {jr2aZi lnx- Y]xdx, (48) 

and the factor E/k has been made unity here and in the 
following equations, corresponding to extremely rela-
tivistic particles. %(x) *s defined only for x< 1, and is in 
general obtained from Eq. (41) expressed as a function 
of b/Ro. Equation (48) may be integrated (see Appen
dix), with the result 

k 
J — r~e2aZi InqRo 

iq2 

X { — laZiqRoJo (qRo)S-2aZi, - I (qRo) 

+qRoJi(qRo)Si-2*zi, o(qRo)} 

-qRoJi(qRo)l, (49) 

where Jo and J\ are Bessel functions, and S^ are 
Lommel's functions.12 

In order to obtain a numerical result for I2 it is 
necessary to employ the asymptotic series Eq. (A5) for 
SpV(qRo). If the cutoff radius Ro is made sufficiently 
large that 

^ o > 1 0 , (50) 

then the retention of the first three terms of the series 
insures accuracy of better than one part in 2000. There 
is little merit in going beyond three terms, and if one 
includes too many terms the situation becomes worse 
due to the divergence of the series. The requirement 
Eq. (50) actually turns out to be quite reasonable for 
physically interesting models. 

It may now be seen why it was important to retain 
the unity term in Eq. (48), resulting in the last term of 
Eq. (49). This term cancels precisely the first term 
(unity) in the asymptotic expansion of Si-2az%, o(qRo), 
when it is inserted into the next to the last term of 
Eq. (49). 

Since asymptotically qRoJi(qRo)^ (qRo)112, this term 
would increase with cutoff radius. Its contribution to 
12 for typical nuclear radius and energy would represent 
a term in the cross section whose order of magnitude is 
comparable to or greater than that for a Coulomb point 
charge, and is larger by some decades than the solution 
for a distributed charge (see Figs. 21 and 22 of Ref. 1). 
Thus if this term were present in the solution we would 
have 

| / 2 | » | / i + / 2 | . (51) 

Since h must in general be computed numerically, 
errors in numerical integration would be amplified as 
much as 100 times in the scattering amplitude. The 
explicit cancellation of this undesirable term avoids 
such large numerical cancellations, making it possible 
to apply the high-energy approximation to energies 
well up in the BeV range. 

All terms of Eq. (49) which remain after this explicit 
cancellation decrease with increase in R0) so that the 
situation represented by Eq. (51) may be avoided or 
at least minimized by choosing Ro sufficiently large. 
The integration of h in Eq. (47) is in general carried 
out numerically, and the result added to Eq. (49). The 
alternation of the positive and negative Bessel loops in 
the integrand of Eq. (21) provides the mathematical 
correspondence to the process which occurs when the 
separate partial waves are added. It is interesting also 
to note that our explicit evaluation of I2 to infinity 
corresponds to summing all the phases, whereas the 
partial-wave expansion must be terminated in practice. 

In choosing a convenient value of cutoff radius Ro, 
one should remember to satisfy Eq. (50); otherwise the 
asymptotic series Eq. (A5) is not suitable for obtaining 
the Lommers functions S^. Thus calculations for the 
uniform model in the 200-300-MeV region were based 
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on a modified form of Eq. (44), 

x ( 6 ) = - 2 a Z - j l n — + l n [ l + ( l - ( V n ) 2 ) 1 / 2 ] 
k i R0 

-i[4-(&Ai)2]Cl-(6Ai)2]1/2} , (44a) 

where ri is the actual radius of the sphere, and the cut
off radius Ro is so placed that ri/Ro=%. On the other 
hand, at 1000 MeV the momentum transfer was large 
enough to allow the use of the original form Eq. (44), 
i.e., corresponding to ri=i?0 in Eq. (44a). 

V. RESULTS FOR NUCLEAR MODELS 

The prediction of elastic cross sections in the high-
energy approximation is based on: 

(1) Determination of the potential integral function 
x(b) by means of Eqs. (22), (31), or (41), 

(2) Evaluation by means of Eq. (49) of the model-
independent Coulomb portion of Eq. (21), correspond
ing to b>Ro, and 

(3) Numerical integration of the model-dependent 
integral Eq. (47) for b<R0. 

For those physical models where xQ*/Ro) must be 
obtained by numerical integration of Eq. (41), it should 
be noted that when once this computation has been 
carried out for a given charge distribution, the resulting 
function may be stored and used repeatedly as the size 
of the nucleus is varied, provided only that the char
acteristic nuclear radius and the charge cutoff radius 
are scaled proportionately. Furthermore, since xQ>/Ro) 
for a particular model is a linear function of nuclear 
charge Z, it need be integrated only once for all the 
elements. It is of course likewise independent of energy. 

The differential cross section for elastic scattering of 
extremely relativistic electrons or positrons from a given 
nuclear model is given by 

da/dQ = | M |2 = | Ii+h |2 cos2 (0/2) . (52) 

12 is obtained from Eq. (49) by employing the asymp
totic expansion Eq. (A5). The resulting expression, in
corporating the three lead terms of Eq. (A5) for SM„, is 

kR0 

Re/2= Z2aZAJo(qRo)-DJ1(qR^)2 , (53) 
9 

kR0 
Im/2= l2aZBJo(qRo)+CJ1(qR0)l, (54) 

where 
1 r 4(aZ)2f 4 

A = —\ 1+ | l - [5 - («Z) 2 ] 

B=-

qRoi (qRo)21 (qRo) 

4aZ r 8 1 
J ! {l-2(aZ)2} , 

(qRoYL (qRo)2 J 

, (55) 

(56) 

4(aZ)2r 4{l-(aZ)2}-J 

'~~(<Z#o)2L (qRoY J ' 
32 (aZy 

(qRoY 

Since 72 may be written 

/2=WiV z )(<Z#o), 

(57) 

(58) 

(59) 

the model-independent Coulomb function F2(z)(qRo) 
may be plotted for a given target element as a function 
only of qRo and applied as needed for all models and all 
energies. However, when a computer is used in the 
evaluation there is no particular advantage in this, since 
it is easy enough to recompute each time. 

The numerical integration of Eq. (47) to obtain I\ 
for energies of several hundred MeV was carried out by 
Simpson's rule, using 200 intervals. Test calculations 
were also made at 100 and in some cases at 400 intervals 
to verify 'that rounding and truncation errors of inte
gration were not significant. The Bessel function 
Jo(qRox) was stored in the computer memory for argu
ments < 16 in the form of a table of 80 values in argu
ment intervals of 0.2, and table look-up was employed 
with 4th-order interpolation. For arguments > 16 the 
function was computed asymptotically. 

The ability of the high-energy approximation to wash 
out the diffraction zeros first of Born approximation can 
be seen in Fig. 1, where the Born cross section for 420-
MeV electrons scattered from a Family II (Ford-Hill 
model) carbon nucleus is compared with that of the 
high-energy approximation. The Family II charge 
density distribution is given by3 

where 

p=po[l-|e-n(1-r/rl)], r/n<l, 
=Po[i^w ( r / f l- 1 )] , f / n > l , 

(60) 

1 1 
Po= 47iri3 $+2/n2+<rn/n* 

In the region where the Born approximation gives 
good results the high-energy approximation virtually 
coincides with the Born cross section. In the neighbor
hood of the diffraction minimum, where Born approxi
mation breaks down, the characteristic Born diffraction 
zero is rounded out by the infinite expansion in powers 
of aZ which is implicitly contained within the high-
energy approximation. 

The effect of this approximation is best illustrated in 
the case of the heavier target elements, where Born 
approximation becomes virtually useless. However, the 
effect of the reduced electron wavelength mentioned in 
II above should now be considered. This situation, 
which is common to both Born and high-energy approxi
mations, is caused by failure to take note of the con
traction of the electron's unit of length as it enters the 
potential well. Since the actual incident momentum k 
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10-33 

51° 57° 

SCATTERING ANGLE 

FIG. 1. Comparison of high-energy approximation and Born 
approximation for 420-MeV electrons scattered from carbon, 
Family II model, n=4, ri = 2.518 F. 

Charge density p=p0[l—§e~n(1~ r / r i )], r/n<l 
=Po[ i<T^ i - i> l r/n>l. 

80° 100* 
SCATTERING ANGLE 

FIG. 2. Comparison, of phase-shift analysis and uncorrected 
high-energy approximation for 241.5-MeV electrons scattered from 
gold, uniform model, i? = 6.54 F (kR = 8). 

is a parameter of the problem which is not confined to 
the vicinity of the nucleus, it may not be adjusted. 
Instead one describes the effect as causing the radius of 
the target to appear too small, shifting the diffraction 
pattern toward increased scattering angles. It also 
results in an apparent increase in the number of incident 
particles approaching the target per unit area, reducing 
the scattering cross section. This may be seen in Fig. 2, 
where the diffraction pattern for 241.5-MeV electrons 
scattered by a uniform model gold nucleus is seen to be 
shifted and lowered with respect to that of the phase-
shift analysis results of Ravenhall and Yennie.1-2 

Because the de Broglie wavelength actually varies 
continuously as the particle approaches the scattering 

io-2n 

10-2% 

a 10-30L 

I0-32U 

PHASE-SHIFT ANALYSIS 

HIGH-ENERGY 
APPROXIMATION 
(CORRECTED IN RADIUS, 
BUT NOT IN AREA) 

80° 100° 
SCATTERING ANGLE 

FIG. 3. Comparison of phase-shift analysis and high-energy 
approximation, including correction factor in radius, but not in 
cross section area, for 241.5-MeV electrons scattered from gold, 
uniform model, R•== 6.54 F (kR = 8). 

center, the failure to include this effect can be con
veniently corrected only in the average sense. But since 
it is a small correction, and vanishes in the high-energy 
limit, this appears to be adequate. Conversely, an in
accuracy in application of the proper factor will merely 
introduce an error of the order of one or two percent in 
the radius predicted from fitting to experimental data. 

As discussed in Sec. II we apply the factor 
( 1 + | F | / E ) evaluated at the rms radius to linear di
mensions. In Fig. 3 this factor has been applied to the 
radius of the target, but no correction has been made in 
the cross section. Thus the pattern has been shifted in 
angle, but is still slightly lower than that of partial-wave 
analysis. This lowering effect has not been previously 
noticed in the case of Born approximation, due un-
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doubtedly to the overpowering presence of the diffrac
tion zeros precisely where it would otherwise be most 
apparent. In Fig. 4 the results have been fully corrected 
by the further application of the factor (1+1 V\/E)2 to 
cross sections. It may be seen that the fully corrected 
results are in quite close agreement with the partial 
wave computation. 

It is interesting, and possibly significant, that after 
these corrections in linear dimensions, the results of the 
high-energy approximation are so very good, even at 
large scattering angles. Our argument about change of 
length scales is rather simple and general, although it 
must be admitted to have arrived after the fact. 

PHASE-SHIFT ANALYSIS 

HIGH-ENERGY 
APPROXIMATION 
(FULLY CORRECTED) 

80° 100* 
SCATTERING ANGLE 

FIG. 4. Comparison of phase-shift analysis and high-energy 
approximation, fully corrected in both radius and cross section 
area, for 241.5-MeV electrons scattered from gold, uniform model, 
£ = 6.54 F (kR = S). 

Since the scattering amplitude is a ratio of the number 
of scattered particles to the number of incident particles 
approaching the target per unit area, the contraction of 
length scales affects terms appearing in both the nu
merator and the denominator of this ratio. The ad
justment (1+ | V\/E) in the nuclear radius is made to 
accommodate terms affecting the numerator, while the 
square of this factor is applied to the area term of the 
denominator. 

In Fig. 5, 420-MeV electrons have been scattered by 
a Family II lead nucleus. The phase-shift analysis 
curves represent unpublished data from the study by 
Ford and Hill.16 As an indication of some of the numeri
cal problems two phase-shift analysis curves are plotted, 
corresponding to different integration intervals, for 

: io-3°L. 

; I O - 3 3 

_ j , ( , j , n 

PHASE-SHIFT ANALYSIS 

HIGH-ENERGY 
APPROXIMATION 
(FULLY CORRECTED) 

50° 60° 70° 

SCATTERING ANGLE 

FIG. 5. Comparison of phase-shift analysis calculations based on 
two different integration intervals, and high-energy approximation 
(fully corrected). Electrons at 420 MeV scattered from lead 
Family II model, n = \0, ^ = 6.67 F. 

comparison with the high-energy approximation, fully 
corrected. The numerical sensitivity of the phase-shift 
calculations can be seen at the diffraction minima, par
ticularly at large momentum transfer, where the results 
become rather questionable. 

Figure 6 depicts the scattering of electrons and posi-

16 K. W. Ford and D. L. Hill, Ann. Rev. Nucl. Sci. 5, 25 (1955). 

60° 80° 

SCATTERING ANGLE 

FIG. 6. Comparison of phase-shift analysis and high-energy 
approximation (fully corrected) for 300-MeV electrons and posi
trons scattered from bismuth, uniform model, fi = 6.64 F. 
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TABLE I. Correction terms \V(rrma)\/E applied to linear di
mensions for the particular targets, energies, and models con
sidered, corresponding to "frequency modulation" of the wave 
function. The ratio was obtained by dividing the depth or height 
of the potential well or barrier, respectively, at the rms radius of 
the charge distribution, by the incident energy. For electron scat
tering the actual target radius is increased in this proportion in the 
calculations, while the cross section is increased by twice this 
amount, while for positron scattering the radius and cross section 
are similarly reduced. 

Nucleus Energy Model \V(rim8)\/E 

Gold 
Bismuth 
Lead 
Carbon 
Gold 

241.5 
300 
420 
420 

1000 

Uniform 
Uniform 
Family I I 
Family I I 
Uniform 

0.0935 
0.0719 
0.0488 
0.0083 
0.0220 

trons, respectively, from bismuth at 300 MeV. The 
phase-shift analysis is due to Herman, Clark, and 
Ravenhall.4 In the case of positron scattering the po
tential well becomes a barrier, and the correction 
changes sign, becoming (l—\V\/E), so that in high-
energy approximation the nuclear radius must be 
reduced and differential cross sections decreased. Other
wise the change in sign of the potential merely trans
forms Eq. (21) into its complex conjugate, producing no 
change in the form of the cross section. A comparison 
of the curves of Fig. 6 reveals the total effect of the 
double shift 21 V\/E. 

It appears from these results that the electron-posi
tron difference studied by Herman, Clark, and Raven-
hall is readily attributable to the effective scale change 
discussed above. Our calculation reveals simply and 
vividly what was suggested by Herman, Clark, and 
Ravenhall, i.e., that the electron-positron difference 
may be regarded as an essentially kinematic effect, 
probably quite insensitive to nuclear dimensions, at 
least at these energies. 

Table I lists for the various targets, energies, and 
models, the appropriate rms | V \ /E factor applied as 
adjustment in radius; twice this factor was applied as 
corresponding correction in cross section. 

A very interesting feature evident in Figs. 2 through 6 
is the fact that the high-energy approximation gives 
excellent results for the amplitude of the diffraction 
oscillations. This filling in of the diffraction zeros of 
Born approximation to just about the right amount has 
not appeared in previously reported results7 of high-
energy approximations. Furthermore, it does not 
depend on the semiempirical change of scales correction, 
which merely introduces a displacement of the curves. 

In view of the extent of agreement of the high-energy 
approximation with the results of partial-wave analysis, 
the former technique was applied to the scattering of 
electrons in the BeV energy range. This is a region in 
which phase-shift analysis has apparently not been 
practical, due to the problem of error amplification re
sulting from phase cancellations. It has been observed 

by Herman, Clark, and Ravenhall4 in phase-shift cal
culations on an IBM-7090 computer with double pre
cision arithmetic, that an attempt to distinguish certain 
nuclear shapes at 300 MeV was "unfortunately accom
panied by the rapid decrease of both electron and posi
tron cross sections to the 10~34 cm2/sr range. At this 
stage even our partial-wave analysis become compu
tationally unreliable." 

To observe the behavior of the high-energy approxi
mation under conditions of very small cross sections, a 
computation was carried out for scattering of 1000-
MeV electrons from a uniform model gold nucleus. The 
results plotted in Fig. 7 show cross sections as low as 
10~38 cm2/sr, and are included to demonstrate the 
analytical capability of the technique, rather than with 
a view to fitting experimental data. Some 150 points 
were found in order to obtain this curve. The computa
tion was found to be exceedingly stable, with very little 
difference in the answers between 200 and 400 integra
tion intervals for all except the largest scattering angles, 
at which point the difference between 400 and 800 
intervals was virtually indistinguishable. Even some 
probing runs at 3 BeV showed no evidence of having 
exceeded the capacity of the system, although finer 
integration intervals became necessary. Thus at high 
energies, precisely when the approximation becomes 
most valid, this technique would appear to attain its 
maximum usefulness. 

Furthermore, it may be seen from Eqs. (47) and (48) 
that the scattering matrix element may be expressed in 

HIGH-ENERGY 
APPROXIMATION 
(FULLY CORRECTED) 

10-37 

80° 100* 

SCATTERING ANGLE 

FIG. 7. High-energy approximation (fully corrected) for 1000-MeV 
electrons scattered from gold, uniform model, i?=6.54 F. 
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the simple functional form 

M=kRo2FW(qRo)uf*Uo, (61) 

thus facilitating prediction of the effect of size and 
energy change on the scattering cross sections and 
making possible the parametrization of the results. 
Even for the heavier nuclei it becomes possible now to 
plot different energies on one curve for fitting experi
mental data, a procedure which in the past3 has been 
confined to Born approximation. 
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APPENDIX: EVALUATION OF INTEGRAL IN EQ. (48) 

Integration of 72 is difficult with the insertion of a 
negative damping exponential and impossible without 
it. I t is therefore rewritten 

h=Ic-h, (Al) 

where Ic is the pure Coulomb solution, corresponding 
to the integral of Eq. (48) evaluated from zero to in
finity with exponential damping, and 

kR0
2 f1 

7o= / Jo(qRox)le~2aZi ln*-\~]xdx. (A2) 
i Jo 

As in Eq. (26), 

2aZk f r qR0 "11 
Ic=—^~ expH 2aZ In +2rj . (A3) 

The two terms of Eq. (A2) may be evaluated as 
indefinite integrals without the exponential damping 
factor, since the answer is the same in the limit as the 
factor goes to unity. The result is12 

k 
Io=-rle

2aZi l»<*R°{-2aZixJo(x)S-.2aZi, -i(x) 
i(f 

+xJ1(x)Si-2aZi, o(*)}-s/ i (*)]o**0 , (A4) 

where the last term in Eq. (A4) is the integral of the 
unity term in Eq. (A2), and the rest of the expression 
includes Bessel functions and LommeFs functions SpV. 
The latter may be evaluated in the limit of large argu
ment by the asymptotic series12 

r ( M - 1 ) 2 - * 2 

L z2 

{(lx-l)2-v2H(fi-3)2-v2} 1 / N 

+ , (A5) 
34 J 

where all terms may in general be complex. 
The determination of the lower limit in Eq. (A4) 

requires some care, since 5MV(0) is infinite. Using a small-
argument expansion12 for S^ , we find for small x, 

S-2aZi, - i(*) = ier**< l»2T(l-aZi)T(-aZi) 

X[sin{ ( l -2aZ i )V2} / - i ( t f ) 

- cos{ ( l - aZ*) i r / 2 )F_ i (* ) ] , (A6) 

Si-2«zi, o(x) = e-2<*Zi l»2T(l-aZi)T(l-aZi) 

X[sin{ ( l - 2 a Z t > / 2 } / o ( * ) 

- c o s { ( l - 2 a Z i ) 7 r / 2 } F 0 ( x ) ] , (A7) 

where Jv(x) and Yv(x) are Bessel functions of the first 
and second kind, respectively. With the use of these 
expressions we find that Eq. (A4) evaluated at the 
lower limit is precisely equal to the negative of Eq. (A3), 
so that all that finally remains of 72 is the negative of 
Eq. (A4) evaluated at the upper limit. Thus 72 has the 
form of Eq. (49). 


